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On self-sustained oscillations in two-dimensional
compressible flow over rectangular cavities
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Numerical simulations are used to investigate the resonant instabilities in two-
dimensional flow past an open cavity. The compressible Navier–Stokes equations
are solved directly (no turbulence model) for cavities with laminar boundary layers
upstream. The computational domain is large enough to directly resolve a portion
of the radiated acoustic field, which is shown to be in good visual agreement with
schlieren photographs from experiments at several different Mach numbers. The re-
sults show a transition from a shear-layer mode, primarily for shorter cavities and
lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers.
The shear-layer mode is characterized well by the acoustic feedback process described
by Rossiter (1964), and disturbances in the shear layer compare well with predictions
based on linear stability analysis of the Kelvin–Helmholtz mode. The wake mode is
characterized instead by a large-scale vortex shedding with Strouhal number inde-
pendent of Mach number. The wake mode oscillation is similar in many ways to that
reported by Gharib & Roshko (1987) for incompressible flow with a laminar upstream
boundary layer. Transition to wake mode occurs as the length and/or depth of the
cavity becomes large compared to the upstream boundary-layer thickness, or as the
Mach and/or Reynolds numbers are raised. Under these conditions, it is shown that
the Kelvin–Helmholtz instability grows to sufficient strength that a strong recirculat-
ing flow is induced in the cavity. The resulting mean flow is similar to wake profiles
that are absolutely unstable, and absolute instability may provide an explanation of
the hydrodynamic feedback mechanism that leads to wake mode. Predictive criteria
for the onset of shear-layer oscillations (from steady flow) and for the transition to
wake mode are developed based on linear theory for amplification rates in the shear
layer, and a simple model for the acoustic efficiency of edge scattering.

1. Introduction
Oscillations in the flow past an open cavity have been studied for decades, but

still there remain many open questions about even the basic physical mechanisms
underlying the self-sustained oscillations. Cavity oscillations in compressible flows are
typically described as a flow–acoustic resonance phenomenon, and its first detailed
description is credited to Rossiter (1964), but it was known earlier as a mechanism for
edge tones (e.g. Powell 1953, 1961). In this mechanism, small disturbances in the free
shear layer spanning the cavity are amplified via Kelvin–Helmholtz instability. Their
interaction with the trailing cavity edge gives rise to an unsteady, irrotational field,
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the upstream influence of which excites further disturbances to the free shear layer,
especially near the cavity leading edge. At very low Mach number, the scattered field is
essentially incompressible, and the feedback to the leading edge is instantaneous, while
at moderate Mach number there is an acoustic delay. Resonance occurs at frequencies
where the phase change of the disturbance leads to constructive reinforcement. In this
paper we consider Mach numbers from 0.2 to 0.8, and simply refer to the feedback
field as ‘acoustic’.

Another mode of cavity oscillation has been observed, but has received much
less attention, and is relatively poorly understood. In incompressible experiments for
an axisymmetric cavity, Gharib & Roshko (1987) observed a wake mode, where the
oscillating flow over the cavity resembles the wake behind a bluff body, rather than a
free shear layer. Flow features in this wake mode were qualitatively very different from
those in the shear-layer mode described by Rossiter, and wake mode was accompanied
by a large increase in drag. Similar dramatic increases in drag had been previously
observed by Fox (1968) as the cavity length was increased, in flows with thin laminar
upstream boundary layers, and Roshko (1955) observed an intermittency ‘analogous
to the large fluctuations of drag which occur on a bluff cylinder in the critical range of
Reynolds number,’ where the flow may be switching between shear-layer mode and a
type of wake mode. Recent experiments and numerical studies by Kriesels et al. (1995)
for a flow past closed branches of a pipe (with both circular and two-dimensional
cross-sections) also demonstrate flow structures that closely resemble wake mode.

Note that cavity oscillations have been categorized by Rockwell & Naudascher
(1978) into ‘fluid-dynamic’ oscillations, and ‘fluid-resonant’ oscillations, where the
acoustic resonance of the cavity itself plays an important role, as in a flute or an
organ pipe. Both of these classes of oscillations are variations of shear-layer mode,
and should not be confused with wake mode.

Research in cavity flows has seen renewed activity in recent years, largely because
of the possibility of using active control to reduce the oscillations, for applications
such as aircraft wheel wells and weapons bays. For active control to be used most
effectively, an accurate understanding of the flow physics is essential. This was the
original motivation for the present study. The recent literature on control of cavity
oscillations is too vast to survey here, but we mention the early work of Sarohia &
Massier (1977) and Gharib (1987), and refer to the recent review article by Colonius
(2001) for more information. More details about cavity oscillations in general may be
found in review articles (e.g. Rockwell & Naudascher 1978; Blake & Powell 1986);
see also the recent work by Howe (1997) for very low Mach number cavity flows, and
Crighton (1992) for edge tones.

The focus of the present work is to investigate numerically the two regimes men-
tioned above – shear-layer mode and wake mode – in two-dimensional subsonic flow
over a rectangular cavity. The experiments of Gharib & Roshko were performed
for an axisymmetric cavity, and when wake mode is present they mention signifi-
cant large-scale motion across the centreline, suggesting that wake mode oscillations
might be suppressed in two-dimensional geometries. The experiments of Kriesels et
al. (1995) also involved coupling between two different cavities (closed side branches
of a pipe), and it is not clear to what extent the coupling is important. The present
investigation demonstrates that wake mode occurs in two-dimensional flows even
without the presence of such coupling.

Previous numerical studies of compressible cavity flows have used the two-
dimensional unsteady RANS (Reynolds averaged Navier–Stokes) equations with
a k–ε turbulence model (Lamp & Chokani 1997; Zhang, Rona & Edwards 1998;
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Fuglsange & Cain 1992). The effectiveness of compressible turbulence models for
separated oscillating flows, and especially their radiated acoustic field (which, as
noted above, is an integral part of the resonant instability modes) remains an open
question. Direct numerical simulations (DNS) provide a means to study the details of
the modes of oscillation and their interactions, albeit at low Reynolds number, and
have been used recently by Colonius, Basu & Rowley (1999) and Shieh & Morris
(1999). In § 2 we present a high-order-accurate method for solving the compressible
Navier–Stokes equations in the cavity geometry and give results for two-dimensional
computations. The generated acoustic field is directly resolved in the computation,
and the domain is made large enough to include a portion of the radiated acoustic
field. It needs to be stressed that in the context of two-dimensional flows, we use the
term ‘direct’ simulation to imply that there is no turbulence model. In this case the
flow is an unstable laminar flow that is confined to evolve in only two dimensions. The
turbulent cavity flow is of course three-dimensional, but it is thought that in many
cases the resonant modes are approximately two-dimensional. Some two-dimensional
Navier–Stokes calculations of the cavity flow were also undertaken by Slimon, Davis
& Wagner (1998), who formulated the problem as a ‘hybrid’ method where, for low
Mach number, the acoustic modes were solved independently of the hydrodynamic
field.

In § 3, results from the computation are used to visualize the acoustic feedback
process described above, and the radiated acoustic fields are compared to the schlieren
photographs of Krishnamurty (1956). Details of the shear layer spanning the cavity
are discussed, and compared with available experimental results and predictions from
linear theory.

In § 4, we consider wake mode oscillations in detail, and find that the frequencies
of oscillation are independent of Mach number, suggesting that acoustics no longer
play a role in the mechanism for self-sustained oscillations. We conjecture that
for sufficiently strong recirculating flows within the cavity, the shear layer becomes
absolutely unstable (in the sense of Huerre & Monkewitz 1985), and thus provides
a competing feedback mechanism, separate from the usual acoustic feedback. The
transition to wake mode appears also to be connected with unsteady oscillating
separation of the boundary layer upstream of the cavity.

In § 5, we develop criteria to predict both the onset of fluctuations in shear-layer
mode (from steady flow), and the transition to wake mode. The criteria are based
on linear stability calculations of the amplification of disturbances in the shear layer,
and a simple model for the efficiency of radiation from the cavity trailing edge. The
criteria are in excellent agreement with the computed results. The model also sheds
some light on the parametric dependence of the onset of fluctuations, explaining
trends seen in previous experiments, and also the transition to wake mode. Finally,
in § 6, we discuss the wake mode transition in the context of experimental results and
some previous RANS calculations, and propose explanations for why wake mode is
less likely to appear in three-dimensional flows and at higher Reynolds numbers.

2. Numerical method
The numerical method used here is very similar to methods used previously for

direct computations of sound generation in mixing layers and jets and other canonical
problems (e.g. Colonius, Lele & Moin 1997), wherein the fully compressible Navier–
Stokes equations are solved. These studies have shown the efficacy of sixth-order-
accurate compact finite-difference schemes (Lele 1992) in resolving acoustic fields
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Figure 1. Schematic diagram of cavity configuration and computational domain.

with velocity fluctuations five orders of magnitude smaller than near-field fluctuations
(Colonius et al. 1997). Time integration is performed with a fourth-order Runge–Kutta
method. This combination of schemes results in very low numerical dissipation, which
allows accurate wave propagation. The method relies solely on physical viscosity for
stability.

Boundary conditions play a key role in aeroacoustic computations. Artificial bound-
aries (inflow/outflow/normal) must allow vortical and acoustic waves to pass freely
with minimal reflection. It is important to distinguish between two types of reflections
that may occur: ‘smooth’ reflections, which arise due to approximations in the contin-
uous boundary condition formulation; and ‘spurious’ or saw-tooth reflections, which
arise due to the dispersive nature of finite difference schemes (Rowley & Colonius
2000). For equations of motion linearized about a uniform mean flow, it is possible
to derive boundary conditions that are non-reflecting for both types of waves, to
arbitrarily high order of accuracy (Rowley & Colonius 2000). For nonlinear equa-
tions, especially at outflow boundaries, the interaction of disturbance amplitudes and
mean flow gradients severely limits the accuracy of any linear boundary conditions
(Colonius, Lele & Moin 1993). Several treatments that rely on a ‘buffer’ zone near
the computational boundary have been suggested to remedy this situation. These
include combinations of grid stretching and filtering (e.g. Colonius et al. 1993), and
the addition of artificial convection velocities and damping terms to the equations
(e.g. Freund 1997). These ‘buffer’ conditions are combined with robust (but low-order
accurate) non-reflecting boundary conditions, such as one-dimensional characteristic
wave decompositions (Thompson 1987; Poinsot & Lele 1992).

Figure 1 shows a schematic diagram of the computational domain. A Cartesian
grid is used, with clustering of nodes near all the walls. Analytical error function
mappings are used for the grid stretching. The code is parallelized using a domain
decomposition method. Typical grids (see captions of figures 2 and 3) contain about
half a million grid points. The code has been run on 8 to 32 processors of an IBM
SP2. The wall is assumed to be isothermal at the same temperature as the free stream
(therefore transport properties are assumed constant, and the Prandtl number is taken
as 0.7). For the inflow, outflow and normal boundaries, the one-dimensional boundary
conditions of Poinsot & Lele (1992) are used, together with artificial damping terms
in a buffer region (Freund 1997). These terms, of the form σ(q − qtarget) are added to
the right-hand sides of the equations in conservative form (here q is a vector of the



Oscillations in flow over rectangular cavities 319

0.30

0.15

0

–0.15

–0.30
0 1 2 3 4 5

Domain flow-through times

v
U

(a)

0 5 10
Domain flow-through times

–0.4

(b)

0

0.4

0.8

Figure 2. Effect of boundary position and grid resolution on the normal velocity at y = 0 and
x = 3.13D: (a) reference case L4 (——) compared with a finer grid case (– – –) and larger domain
case (· · · · · ·); (b) only the larger domain case, for longer time. Reference case L4 has downstream
boundary 10.6D, upstream −4.3D, normal 9.2D. The grid has 1152 × 384 points above the cavity
in the streamwise and spanwise directions, respectively, and 384× 94 points in the cavity. The finer
grid case has the same boundaries as run L4, but 50% more grid points (in each direction). The
larger domain case extends to 15D downstream and 15D in the normal direction. Note that the
dotted line falls nearly directly on top of the solid line in (a).

conservative dependent variables). The damping, σ, varies smoothly from a constant
value at the boundary to zero at the edge of the buffer (i.e. the edge of the ‘physical’
portion of the computational domain). For the isothermal wall boundary conditions,
including the cavity edges, the formulation recommended by Poinsot & Lele is used.

The simulations are initiated by spanning the cavity with a Blasius flat-plate
boundary layer. The following parameters may be independently varied: the length
of the cavity relative to the initial boundary-layer thickness at the cavity leading
edge, L/θ0; the Reynolds number, Reθ = ρ∞Uθ0/µ, where ρ∞ is ambient density, U is
free-stream velocity and µ viscosity; the Mach number of the free stream, M = U/a∞
where a∞ is ambient sound speed; and the cavity length to depth ratio, L/D. Because
of the expense, only a relatively small portion of parameter space may be investigated.
In the present paper, we concentrate on two-dimensional computations with laminar
upstream boundary layers. Table 1 shows relevant parameters for the runs performed.

It should be noted that the quoted values of θ0, the boundary-layer momentum
thickness at the upstream cavity edge, are taken from the initial condition for each
run. The oscillations that develop in the cavity can alter this value. The variation is
very slight in the case of the shear-layer mode oscillations, but can be significant in
the wake mode discussed in § 4.

2.1. Validation

For the present flow, and for resonant flows in general, it is of critical importance that
results be independent of the location of the boundaries, and the boundary treatment.
If boundaries are not treated properly, repeated spurious reflections of waves can
lead to self-forcing of the flow, in a process that is ultimately indistinguishable from
physical instability (e.g. Colonius et al. 1993). We have run several cases with variable
boundary location and grid spacing, in order to find appropriate boundary locations,
as well as demonstrating grid convergence. The results of two such tests are shown
in figures 2 and 3.

Figure 2 shows the normal velocity at a single point in the shear layer (x = 3.13D,
y = 0), for different grid resolutions and boundary locations, but otherwise using
the same parameters as run L4. Other probe locations yielded similar results. Note
that time is normalized by the free-stream velocity and the total length of the
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Run L/D L/θ0 M Reθ Mode StD (wake mode) CD

L1 1 20.3 0.6 73.9 NO — 0.002
L2 2 52.8 0.6 56.8 SL — 0.008
L3 3 75.0 0.6 60.0 M — 0.031
L4 4 102.1 0.6 58.8 W 0.064 0.227
L5 5 123.3 0.6 60.8 W 0.054 0.404

4M2 4 102 0.2 58.8 SL —
4M3 4 102 0.3 58.8 M —
4M4 4 102 0.4 58.8 W 0.064
4M5 4 102 0.5 58.8 W 0.064
4M6 (L4) 4 102 0.6 58.8 W 0.064
4M7 4 102 0.7 58.8 W 0.061
4M8 4 102 0.8 58.8 W 0.061

2M2 2 52.8 0.2 56.8 NO —
2M3 2 52.8 0.3 56.8 NO —
2M4 2 52.8 0.4 56.8 SL —
2M5 2 52.8 0.5 56.8 SL —
2M6 (L2) 2 52.8 0.6 56.8 SL —
2M7 2 52.8 0.7 56.8 SL —
2M8 2 52.8 0.8 56.8 SL —

H1 1 23.2 0.6 86.3 NO —
H2 2 58.4 0.6 68.5 SL —
H3 3 84.9 0.6 70.6 M —
H4 4 116.7 0.6 68.5 W 0.063

LG6a 6 45.18 0.6 58.57 NO —
LG6b 6 90.36 0.6 29.28 SL —
LG8 8 60.24 0.6 58.57 NO —

TK4a 4 30.12 0.6 58.6 NO —
TK4b 4 60.24 0.6 58.8 SL —
TK4c 4 75.30 0.6 58.8 M —
TK4d (L4) 4 102.1 0.6 58.8 W 0.064

R4a 4 86.06 0.6 45.8 SL —
R4b (TK4b) 4 60.24 0.6 58.8 SL —
R4c 4 74.55 0.6 80.5 W 0.063

Table 1. Parameters for the different computer runs. Abbreviations for modes are: NO = no
oscillations, SL = shear layer, W = wake, M = mixed. Strouhal numbers of vortex shedding (based
on cavity depth and free-stream velocity) are given for wake mode runs, and the computed drag
coefficient is given for run series L (see § 4).

computational domain for the reference case. The larger-domain case is run for
longer than the finer-grid case, as the domain size is more likely to cause low-
frequency errors, arising from non-physical reflections at boundaries. Figure 3 shows
a similar test for run L2, and the spectra are compared.

For the first 3 to 4 flow-through times, the results are nearly identical, independent
of grid resolution and boundary location. Small differences are apparent at later
times, which is not unexpected given the sensitive dependence on initial conditions.
For run L2, greater differences are observed after about 10 flow-through times, but
the spectra are almost identical. We conclude that the boundary locations and grid
resolutions for runs L2 and L4 are adequate, and similar locations and resolutions
were used in the other runs in table 1.
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Figure 3. Effect of grid placement on the normal velocity at y = 0 and x = 1.57D, for run L2: (a)
the time trace for the reference case (——) and for a larger domain case (· · · · · ·); (b) the spectra
of the data in (a). Reference case L2 has downstream boundary 7.6D, upstream −3.9D, normal
9.2D. The grid has 1008× 384 points above the cavity, and 240× 96 points in the cavity. The larger
domain case extends to 11.8D downstream and 15.6D in the normal direction.
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Figure 4. Instantaneous vorticity contours for run L2 (shear-layer mode) at three different times
(a–c), corresponding to approximately one-third phase intervals of the dominant mode of oscillation
(2nd Rossiter mode). 15 equi-spaced contours between ωD/U = −5 and 1.67 are shown; positive
contours are dashed. Only a small portion of the computational domain near the cavity is shown.

3. Shear-layer mode
The shear-layer mode is characterized by the feedback process described in the

introduction: the roll-up of vorticity in the shear layer, impingement and scattering of
acoustic waves at the downstream cavity edge, upstream acoustic wave propagation,
and receptivity of the shear layer to acoustic disturbances. The process is clearly born
out by the computational results. Iso-contours of vorticity are depicted in figure 4 for
run L2, and these are indicative of all the runs in the shear-layer mode of oscillation.
Vortical disturbances in the shear layer are clearly evident, and the flow inside the
cavity is relatively quiescent, with a weak vortex occupying the downstream half of
the cavity. Vorticity of the opposite sign (to boundary-layer vorticity) is generated
along the walls of the cavity. Note that at three different instants in time, while the
phase of the disturbances in the shear layer has shifted, the vorticity contours in the
cavity are nearly the same. The steadiness of the vortex occupying the latter half of
the cavity (which is confirmed by the mean flow, discussed in comparison to the wake
mode mean flow in § 4) indicates that the interaction of the flow inside the cavity with
the shear layer is relatively weak.

Figure 5 provides a qualititative confirmation of the acoustic feedback process.
Plotted are contours of the density fluctuations along the cavity mouth (y = 0) and
along the cavity walls, as a function of time. Both upstream (acoustic) and downstream
(vortical) disturbances are evident along the shear layer, while density fluctuations
along the bottom are purely acoustic. The phase variation of these disturbances will
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Figure 5. Diagram showing contours of density perturbation along the cavity edges and cavity
mouth (shear layer), as a function of time, for run L2. Contour levels range from −0.03 (dark) to
0.03 (light).

be examined in more detail in § 3.4, but figure 5 is a useful visualization of the
feedback loop involved.

3.1. Acoustic field

In general, it is not possible to distinguish objectively between acoustic and hydro-
dynamic fluctuations in a complex, vortical flow. In this section, we examine the
acoustic field produced by the cavity, where we loosely define the acoustic field as
the irrotational field generated as vorticity is swept past the trailing corner of the
cavity.

The density fluctuations produced by the self-sustained oscillations are shown
in figure 6, where we compare the present results to schlieren photographs taken
by Krishnamurty (1956) for Mach numbers 0.64, 0.7, and 0.8, and L/D = 2. The
experimental conditions are similar, in that the incoming boundary layer is laminar,
but the Reynolds number is higher by a factor of about 5. The cavity in the
experiment had a transverse length of 4 in., compared to the depth of 0.1 in., and
it is expected under these conditions that the instabilities are approximately two-
dimensional. There is a very good qualitative agreement between experiment and
computation. The greyscale contour levels in the simulation were chosen to provide
the best visual comparison with the experiment. It can be noted from the plots that the
frequencies of oscillation (and hence wavelength of the acoustic field) are quite close
at M = 0.7 and M = 0.8. At M = 0.6 (0.64 for the experiment), it appears that the
frequency of oscillation is substantially lower in the simulation, and the experiment at
these conditions is dominated by Rossiter mode 2 while the computation is dominated
by Rossiter mode 1 (see § 3.2).

Also note from figure 6 that the radiation is intense enough that there is significant
steepening of the compressions as the waves propagate, especially at the higher Mach
numbers.

Sound pressure levels (SPL) for the acoustic field above the cavity are shown in
figure 7 for M = 0.6. Maximum SPL near the downstream cavity edge is about
180 dB, and peak radiation to the far field occurs at an angle of about 135◦ from the
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(a) Schlieren, M= 0.64 (b) Run 2M6, M= 0.6

(c) Schlieren, M= 0.7 (d) Run 2M7, M= 0.7

(e) Schlieren, M= 0.8 ( f ) Run 2M8, M= 0.8

Figure 6. Comparison of schlieren photographs (Krishnamurty 1956) with contours of density
gradient from the DNS. In the schlieren photographs, the knife edge is horizontal in (c), vertical in
the others; in the DNS figures, ∂ρ/∂y is shown in (d ), ∂ρ/∂x in the others.
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Figure 7. Sound pressure level (SPL) for run L2.

downstream axis. Sound pressure levels are still at about 170 dB at 3 cavity depths
along the peak radiation direction. These numbers are quite high, but Krishnamurty
(1956) estimated sound pressure levels for the case of laminar boundary layers in
excess of 163 dB for a variety of geometries. These estimates were based on deflections
from finite-fringe interferometry, but no detailed mapping to SPL was performed.
Krishnamurthy (1956) found that laminar boundary layers upstream produce higher
SPL than their turbulent counterparts, and that the L/D = 2 cavity was louder than
longer cavities.

Figure 8 illustrates the separate contributions to the acoustic field when two
resonant frequencies are present simultaneously. Density fluctuations are plotted for
run L2, which has two strong resonant frequencies, at St = fL/U = 0.4 and 0.7. We
performed a discrete Fourier transform (DFT) of 125 samples (every 250 time units)
of the computational data over a period of time TU/L = 30, corresponding to 12
periods of the lower frequency, and 21 periods of the higher frequency. The resulting
data record is approximately periodic in time, and any drift in the data is removed
prior to taking the DFT. We experimented with different windowing techniques, signal
durations, and sampling rates, and we believe the results presented here are free from
any artifacts of the limited signal duration and sampling rates.

Real and imaginary parts of the DFT are plotted, and the different wavelengths
of far-field acoustic radiation are apparent. Hydrodynamic disturbances in the shear
layer are also evident, and will be discussed further in § 3.4. It is striking that the level
of the density fluctuations in the far field is comparable to the level of the density
fluctuations in the shear layer. This indicates the high efficiency of the acoustic
scattering process at the cavity trailing edge. The wavelength of the acoustic fields at
differing angles into the free stream can be measured, and is in agreement with the
predicted value based on the frequency of oscillation and the speed of the wavefront,
a∞(1 + M cos θ), where θ is measured from the downstream x-axis, and a∞ is the
ambient sound speed.
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Figure 9. Spectrum of normal velocity at y = 0 and x = 1.57D, for run 2M7.

3.2. Frequencies of oscillation

Figure 9 shows the spectrum of normal velocity at a point along the cavity mouth,
at y = 0, x/L = 0.783, for a L/D = 2 cavity with M = 0.7 (run 2M7), which is
oscillating in the shear-layer mode. Several distinct peaks and their harmonics are
evident. The frequencies labelled ‘Mode I, II’ correspond to the first two frequencies
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predicted by Rossiter’s semi-empirical formula

Stn =
fnL

U
=

n− γ
M + 1/κ

, n = 1, 2, . . . , (3.1)

where Stn is the Strouhal number corresponding to the nth mode frequency fn, and
κ and γ are empirical constants corresponding to the average convection speed of
disturbances in the shear layer, and a phase delay. The other peaks in figure 9 are
either harmonics or nonlinear interactions between the Rossiter modes.

In figure 10, the frequencies of the two most energetic peaks in the spectra for
the series of runs 2M with L/D = 2 and L/θ0 = 52.8 and 4M with L/D = 4 and
L/θ0 = 102 are compared to experimental data and predictions from equation (3.1),
with γ = 0.25 and κ = 1/1.75, the original values used by Rossiter. Krishnamurty
(1956), whose conditions match the DNS most closely, detected only one mode
in experiments with laminar boundary layers upstream, and the frequencies are
somewhat higher than mode 2 oscillations from the DNS. As noted above, the
Reynolds number in his experiments is about 5 times that of the DNS. Sarohia
(1975) has shown that for low Mach number the frequency of oscillation increases as
the Reynolds number is increased. He found frequencies for modes 1 and 2 at low
Mach number as shown in figure 10, and it would appear that the frequencies of
oscillation at higher Mach numbers increase smoothly to the case M = 0. Meanwhile,
experimental data for turbulent boundary layers, the scatter of which is shown by
the lighter shaded regions on the plot (Tam & Block 1978; Heller & Bliss 1975;
Rossiter 1964), tend to fall somewhat below the laminar case, as noted previously
(Krishnamurthy 1956; Sarohia 1975).

There is quite a lot of scatter in the frequencies measured in experiments at low
Mach numbers. In general, the data from experiments in water are fairly consistent
(Sarohia 1975; Knisely & Rockwell 1982), and the darker shaded region in figure 10
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indicates the frequencies measured by Sarohia. Experiments in air at low Mach
numbers have more scatter (Tam & Block 1978; Rockwell & Schachenmann 1982;
Ahuja & Mendoza 1995), because the frequencies of the resonant acoustic modes of
the cavity itself become comparable to the Rossiter frequencies.

Peaks in the spectra corresponding to harmonics and sum and difference modes
(primarily harmonics of n = 1 and the sum of Rossiter modes n = 1 and n = 2) were
also detected in the data. Such nonlinear interactions between modes were studied
by Knisely & Rockwell (1982) for incompressible cavity flow, and more recently
by Cattafesta et al. (1998) for moderate subsonic speeds, with turbulent upstream
boundary layers. These studies used bicoherence analysis and other sophisticated
signal processing tools that rely on long time series of data. For the spectra obtained
here, signal durations were relatively short, on the order of 20–100 times the lowest
frequency peak in the data, so it was difficult to detect the presence of any mode
switching, as was found to occur over long times by Cattafesta et al. (1998). In
the computations, it appears that the two primary Rossiter modes (n = 1, 2) were
coexistent.

Finally, we note that in figure 10, oscillation frequencies from the 4M series of
modes show the transition to wake mode oscillations for M > 0.3. These data are
discussed more fully in § 4.

3.3. Shear-layer spreading rate

The shear layer spanning a cavity differs from a mixing layer in two main respects:
Kelvin–Helmholtz instabilities are constantly being excited by the intense acoustic
environment; and the entrainment is modified by the presence of the cavity. Despite
these differences, most researchers report that shear layers over cavities closely re-
semble turbulent free shear layers, in that the spreading rate is approximately linear.
However, there is some discrepancy in the actual value of the spreading rate.

Here, we use the vorticity thickness δω = U/(dU/dy)max as a measure of the shear-
layer thickness. It is common to use the momentum thickness θ, defined by integrating
the flux of the momentum deficit from the cavity bottom to infinity. However, the
momentum thickness shows significant variation caused by the recirculating region
in the downstream portion of the cavity. The vorticity thickness is a local measure of
the maximum shear, which better determines instability properties of the shear layer,
and so it is the thickness we choose.

Sarohia (1975) appears to have been the first to measure the spreading rate in
detail, and found that the spreading was approximately linear, and the spreading rate
increased as L/θ0 increased. As L/θ0 increased from 52.5 to 105.2, with Reθ and Dθ0

held constant, the spreading rate dδω/dx varied from 0.025 to 0.088. These values
are significantly lower than typical values for turbulent free shear layers, generally
accepted to be around dδω/dx ≈ 0.162 (Brown & Roshko 1974). The upstream
boundary layers in Sarohia’s experiments were laminar. Gharib & Roshko (1987)
also found linear growth of the shear layer, and found that the spreading rate was
fairly constant at dδω/dx = 0.124† for cavities with L/θ0 > 103. This indicates a
spreading rate much closer to that of a turbulent free shear layer. The recent low-
Mach-number experiments of Cattafesta et al. (1997) also exhibit linear spreading,
with turbulent upstream boundary layers. Though the spreading rate is not stated,
they report that for a cavity with L/θ0 = 328, the spreading rate closely matches that

† Where thicknesses are given in terms of momentum thickness θ, we set δω = 4θ, which is exact
for a hyperbolic tangent profile.



328 C. W. Rowley, T. Colonius and A. J. Basu

2.0

1.8

1.6

1.4

1.2

1.0

0 5 10 15

x/d0

d
d0

Figure 11. Vorticity thickness δω along the shear layer for runs L2 (4) and LG6b (�), and linear
fits with slope dδω/dx = 0.05 (– – – –) and 0.07 (——).

of a turbulent free shear layer, but for a cavity with L/θ0 = 81, the spreading rate is
50% higher, the opposite trend to that observed by Sarohia.

Shear-layer thicknesses from two of our runs are plotted in figure 11. Our data also
indicate approximately linear growth, with spreading rates similar to those measured
by Sarohia. Our run L2 (L/θ0 = 53) has a spreading rate of about dδω/dx = 0.05,
while Sarohia’s experiments had dδω/dx = 0.056 for L/θ0 = 60. Our spreading rates
also increase with L/θ0, and for run LG6b (L/θ0 = 90) we measure dδω/dx = 0.07,
compared to an experiment of Sarohia’s with L/θ0 = 85 and dδω/dx = 0.064. Thus,
our measurements support the trend noted by Sarohia, that the shear layer spreads
faster for longer cavities. A likely reason for this trend is that a longer shear layer
amplifies disturbances more, so the final amplitude of oscillations is larger, thus
increasing Reynolds stresses, which cause the spreading.

3.4. Convection and amplification by the shear layer

In this section, we examine how disturbances are convected and amplified by the shear
layer, and we compare the DNS results to those predicted by linear stability theory.
The linear stability calculations are performed in a standard way, and will be described
only briefly here. We use a compressible, inviscid, locally parallel formulation, and
thus we assume that velocity profiles are slowly varying in the streamwise direction,
but that at each streamwise location the flow is parallel. Normal modes of the form

f(x, y, t) = f̂(y)ei(αx+ωt) + c.c. (3.2)

are assumed, where c.c. denotes the complex conjugate. For spatial instability, ω is

the real frequency, α is the complex wavenumber, f is any flow variable, and f̂(y) is
the complex eigenfunction. These modes are inserted into the inviscid, compressible
equations linearized about the parallel flow (for the flow speeds and isothermal wall
conditions considered here, the mean density is nearly uniform, and for simplicity we
ignore the slight density variation in the stability calculation), and the eigenvalues and
eigenfunctions are found using an adaptive Runge–Kutta shooting method. Boundary
conditions are that the disturbances are exponentially damped for large +y, and zero
normal velocity is imposed at the cavity bottom. We note that in previous analyses
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Figure 12. Mean streamwise velocity profile, ū(x, y)/U, for run L2 (——) compared to the
hyperbolic tangent profiles with the same vorticity thickness (– – – –).

(e.g. Tam & Block 1978) the cavity bottom is not accounted for, as the cavity was
assumed infinitely deep compared to the shear-layer thickness.

We use the simulations to determine the mean flow for the linear stability cal-
culations. Two different calculations are performed, one using the actual velocity
profiles from the DNS, and another using hyperbolic tangent profiles with the same
vorticity thickness and deflection. As shown in figure 12, the agreement is good close
to the cavity leading edge, but much worse near the rear of the cavity, where the
steady captive vortex is present. The actual DNS velocity profiles will of course be
more accurate, but the tanh profiles yield very similar results, and later (§ 5), we use
the tanh-profile linear stability calculations as a predictive tool, to predict the total
amplification by the shear layer.

The overall magnitude and phase of the instability wave is found by integrating
the complex growth rate α over the streamwise positions:

f̃(x, y) = f̂(y) exp

(
i

∫ x

0

α dx

)
, (3.3)

where both the wavenumber α and the eigenfunction f̂ are slowly varying functions
of x. Without carrying the analysis to higher order, the normalization of the eigen-
functions is arbitrary, and we have set the maximum amplitude of the streamwise
velocity mode to unity at each axial position.

Figure 13 shows the normal velocity instability waves ṽ, at the two resonant
frequencies present in run L2 (St = 0.4 and 0.7), using the mean flow from the same
run. Also shown is the DFT of the normal velocity, computed as described in § 3.1.

The linear stability eigenfunctions are seen to be in very good qualitative agreement
with the Kelvin–Helmholtz instability waves at the corresponding frequencies, except
very near the cavity trailing edge, where the DNS results show some of the distur-
bances being swept down into the cavity by the (nearly steady) vortex that occupies
the downstream half of the cavity.

A more quantitative measurement of the phase variation is presented in figure 14.
The phase of vorticity disturbances in the shear layer is plotted, again for run L2, at the
two resonant frequencies. (This is just the phase of the DFT of vorticity, along y = 0.)
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Figure 13. Comparison of mode shapes (real part) for normal velocity fluctuations in the shear-layer
region for parameters of run L2. Contours are between ±0.01U for St1 = 0.4 in (a–c), between
±0.005U for St2 = 0.7 in (d–f ).

Also plotted is the phase of the dilatation close to the cavity floor, which represents
the upstream-travelling acoustic wave inside the cavity. These variables were chosen
to better separate hydrodynamic disturbances from acoustic disturbances, though
very similar results were obtained when normal velocity and pressure were used
in the shear layer and cavity floor, respectively. The dilatation phase is relatively
constant in the y-direction, except near the shear layer, where the hydrodynamic
fluctuations are significant. Notice that the total phase variation from the shear-layer
convection (downstream) and acoustic propagation (upstream) is almost exactly 2πn,
where n is the index of the Rossiter mode. This phase criterion is similar to that
found in several experiments (Knisely & Rockwell 1982; Rockwell & Schachenmann
1982; Gharib & Roshko 1987), which show that in the low-Mach-number limit, the
total phase variation in the shear layer alone is a multiple of 2π. In this limit, the
acoustic propagation is of course instantaneous, so for our compressible simulations
we must add the phase variation of the finite-speed acoustic propagation. Note that
the phase speed of the acoustic waves along the cavity bottom is far from constant.
This indicates the presence of multiple acoustic reflections by the cavity walls.

Linear stability predictions for the phase variation in the shear layer are also
plotted, and the phase variation is predicted well except for very near the leading and
trailing edges of the cavity, where the DNS data show a slower phase speed (steeper
phase variation). We do not expect the linear stability calculations to be very accurate
in these regions, because the flow is rapidly changing in the streamwise direction, and
significantly non-parallel at the downstream corner. In addition, any flow/acoustic
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Figure 14. Phase of vortical and acoustic disturbances for run L2, at the frequencies of the first two
Rossiter modes (St = 0.4, 0.7). Vorticity disturbances in the shear layer at y = 0 (�, �); dilatation
along cavity bottom at y = −0.99D (4,O); and shear-layer phase predicted by linear stability (——,
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Figure 15. Amplitude of normal velocity fluctuations (run L2) along y = 0 at St1 = 0.4 (�) and
St2 = 0.7 (�); and predictions from linear stability for St1 (——) and St2 (– – – –).

coupling will be most important near the cavity corners, where the receptivity to
acoustic disturbances is high. These effects have been studied in detail by Rockwell
& Schachenmann (1982).

Recall that Rossiter’s formula for the resonant frequencies includes an empirical
constant (γ in equation (3.1)) that represents an additional phase lag somewhere in the
feedback loop. It is possible that the steeper phase variation exhibited near the leading
and trailing edges of the cavity is the cause of this additional phase variation. The
average phase speed from the DNS data is cp/U = 0.49 for St = 0.4 and cp/U = 0.41
for St = 0.7, while the linear stability calculations predict phase speeds of 0.63 and
0.49 for St = 0.4 and 0.7.

Figure 15 shows the amplitude of normal velocity disturbances in the shear layer.
The measured growth rates are significantly smaller than those predicted by the
linear theory, which is surprising, because several experiments show the amplitude
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Figure 16. Instantaneous vorticity contours for run L4 (wake mode) at four different times (a–d ),
corresponding to approximately quarter-phase intervals of the periodic cycle. 15 contours between
ωD/U = −5 and 1.67. Positive contours are dashed. Only a small portion of the computational
domain near the cavity is shown.

is predicted well, at least for moderate values of x/θ. Knisely & Rockwell (1982)
used a constant-thickness mean profile, and found that the amplitude matched the
linear theory well, for x/θ0 6 30; Cattafesta et al. (1997) found good agreement
for x/θ0 6 60, also using a constant-thickness mean profile. However, our Reynolds
number is much smaller than that in either of these experiments, so presumably a
viscous stability calculation would agree better.

In summary, linear stability theory gives reasonable predictions for the mode
shapes of the resonant frequencies, and also the convection speeds of disturbances,
but amplification rates are significantly over-predicted. The linear stability calculation
was compressible, but inviscid, and locally parallel. Adding viscous effects, including
effects of flow/acoustic coupling, or carrying out a multiple scales analysis to account
for slightly non-parallel effects (e.g. Crighton & Gaster 1976) may provide a better
agreement than is obtained here.

4. Wake mode
As the length or depth of the cavity (relative to the upstream boundary-layer

thickness) and/or Mach and Reynolds numbers is increased, there is a substantial
change in the behaviour of the cavity oscillations. Under these conditions, the flow is
characterized by a large-scale shedding from the cavity leading edge. As noted in the
introduction, Gharib & Roshko (1987) were the first to understand this transition in
detail, and used the term wake mode to describe the resulting flow regime. Connections
with the experiment are discussed further below. The shed vortex has dimensions of
nearly the cavity size, and as it is forming, irrotational free-stream fluid is directed
into the cavity, impinging on the cavity base. The vortex is shed from the leading edge
and ejected from the cavity in a violent event. The vortex is large enough to cause flow
separation upstream of the cavity during its formation, and again in the boundary
layer downstream of the cavity as it convects away. Figure 16 shows four snapshots
of the vorticity field in wake mode for run L4 over one period of oscillation.
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Figure 17. Time traces of the normal velocity, relative to U, at y = 0, x = 3.13D for the series
of runs L1–L5 (bottom to top) The vertical axes have been artificially shifted to show all the data
clearly, with major tick marks representing 1 unit.
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Figure 18. Time-averaged flow for (a) L2 (shear-layer mode), and (b) 4M6 (wake mode). Mean
streamlines (solid lines) are superposed on contours of constant Cp (dashed lines).

4.1. Flow features

Time traces of the normal velocity at y = 0 and x = 3.13D are shown in figure 17,
for the series of runs L1–L5, where L/θ0 was varied, with constant D/θ0. It is evident
that the transition from shear-layer mode to wake mode occurs as L/θ0 is increased
through 75. For L/θ0 = 25, the oscillations are damped and the flow becomes steady.
For L/θ0 = 75, it appears that there is mode switching, with wake and shear-layer
modes being present at different times (what we referred to in table 1 as the mixed
mode). The transition is also a function of M, and for L/θ0 = 102, the shear-layer
mode exists for M < 0.3 and the wake mode for M > 0.3. Again, time traces for
flows near the transition indicated the presence of mode switching.

Figure 18 contrasts the time-averaged flow for runs L2 (shear-layer mode) and
L4 (wake mode). The mean streamlines in the wake mode are significantly deflected
above the cavity, and show that on average the boundary layer upstream of the
cavity sees an adverse pressure gradient. On average the flow in the cavity is strongly
recirculating, and there is an impingment of the recirculating flow on the rear wall.
It is important to contrast the mean flow with the instantaneous visualizations of
figure 16, which shows there is no stationary vortex within the cavity instantaneously.
The region of high pressure near the back corner of the cavity resembles that observed
by Fox (1965) in his high-drag flow regime. Variations in the average coefficient of
pressure are also quite large, reaching a minimum of about −0.5 where the flow is
expanding into the cavity, to about 0.3 in the impingment region on the rear step.
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Figure 19. Mean streamwise velocity profiles, ū(x, y)/U, at different streamwise positions.
Run L2 (——); Run L4 (– – – –).

By contrast, the shear-layer mode shows much smaller pressure variations, and
mean flow streamlines are nearly horizontal along the mouth of the cavity. The low
pressures (Cp ≈ −0.08) correspond to the centre of the recirculation region that exists
in the rear two-thirds of the cavity (see figure 4). The low-pressure region appears
to be the result of the vortical swirling motion in the cavity, and not because of an
expansion of the flow into the cavity as was the case for the wake mode. There is a
very small impingment region at the rear edge, where Cp reaches about 0.1. However,
over the majority of the rear face Cp < 0, which is consistent with the measurements
of Roshko (1955) and others.

Similar flow features may be seen in mean streamwise velocity profiles, which are
shown for both modes in figure 19. It is again evident that the oscillations in wake
mode have a substantial impact on the mean flow as far as 1–2 depths above the
cavity. The influence of the wake mode is, in the mean, significant to about a quarter
of a depth upstream of the cavity. As we noted in § 2, the momentum thickness at the
cavity edge that we have quoted is that of the initial condition, and figure 19 shows
that this is indeed substantially modified by the flow in wake mode (it is modified
only by a very small amount in the shear-layer mode).

In Gharib & Roshko (1987), transitions between non-oscillatory, shear-layer, and
wake modes occurred at L/θ0 = 80 and L/θ0 = 160, respectively. The present data
indicate a change from wake mode to shear-layer mode that depends also on the Mach
number and Reynolds number. The specific parametric dependence of the transition
to wake mode is discussed in § 4.3. The drag on the cavity (given for selected runs
in table 1), is of comparable magnitude to the values reported by Gharib & Roshko
(1987) for the different regimes. An impingment of the flow on the rear step was also
noted in the experiments, and it also appears (see figure 7(a) of Gharib & Roshko
1987) from dye visualizations that the boundary layer separates upstream of the
cavity leading edge.

4.2. Frequency of vortex shedding

The spectra of the resonant instabilities in wake mode are very different from those of
the shear-layer mode (§ 3.2). After an initial transient, which at early times is similar
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Figure 20. Instantaneous vorticity contours for run TK4b (shear-layer mode).
Contour levels same as figure 16.

to shear-layer mode, the flow becomes nearly periodic in time, with the fundamental
period corresponding to the vortex shedding from the leading edge (see figure 17).
The spectrum (after the onset of wake mode) consists of a dominant frequency and
strong peaks at its harmonics. The 4M series of runs transitioned from shear-layer to
wake mode for 0.3 < M < 0.4, and the peak frequencies were plotted in figure 10.
For M > 0.3, the peaks fall well below the first Rossiter mode prediction, and, unlike
the shear-layer mode, they show little variation with M. For M = 0.4 to M = 0.8 the
fundamental frequency varied less than 4%, compared to the expected variation of
about 20% for Rossiter mode one. The 4% variation is, in fact, within the uncertainty
associated with the total sampling period used to determine the frequency.

The lack of variation with M indicates that the wake mode is not a result of acoustic
feedback, and it appears that the feedback in this case is provided by the complicated
recirculating flow in the cavity. This is discussed further in § 4.4.

4.3. Parametric dependence of the transition to the wake mode

In table 1, we have indicated the dominant mode (steady flow, shear-layer mode,
or wake mode) for the different runs, and, for the wake mode cases, the shedding
frequency StD = fD/U. (Note that here the cavity depth is used for the non-
dimensionalization.) Once established, the shedding frequencies in wake mode are all
nearly the same for cavities with L/D = 4, meaning that, in addition to the invariance
to Mach number noted above, they are not influenced by L/θ0 or D/θ0. A lack of
dependence of the shedding frequency on the boundary-layer thickness is a common
feature of vortex shedding behind bluff bodies (for instance, for laminar flow over a
cylinder, it is well known that the shedding frequency StD = fD/U is constant over a
wide range of Reynolds numbers). We note that for the cavity with L/D = 5 (run L5),
the shedding frequency is about 10% lower than that of the L/D = 4 runs, and that
a periodic wake mode was not detected in any of the runs with L/D = 3 or smaller.
Several of the L/D = 3 runs exhibited some characteristics of both shear-layer mode
and wake mode.

While the wake mode typically occurs for larger L/θ0 and D/θ0, the transition
depends as well on the Mach and Reynolds numbers. For example runs L4 and
TK4b both have L/D = 4, but the latter is oscillating in shear-layer mode, as shown
by the instantaneous vorticity fields plotted in figure 20, which should be contrasted
to figure 16. Moreover, the transition to the wake mode also depends on M, but
it is interesting that, as previously noted, once the wake mode is established the
frequency of vortex shedding is nearly independent of M. The 4M series of runs
shows transition to the wake mode as the Mach number is increased, holding other
parameters constant. The TK4 series of runs shows evidence of transition to wake
mode as D/θ0 is increased, holding L/D, M and Reθ nearly constant, and, finally,
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the R4 series shows transition with increasing Reθ when L/D, M and D/θ0 are held
nearly constant.

In all of the simulations that have been performed, examination of the instantaneous
flow fields shows that the initial growth of instability is always in shear-layer mode,
where acoustic radiation from the downstream edge is the mechanism for the feedback.
The shear-layer oscillations, at early times, are growing in amplitude with each
subsequent cycle, and the wake mode sets in only after the oscillations have reached a
certain threshold. Thus it appears that the emergence of the wake mode is determined
by the conditions in the shear-layer mode, and this forms the basis of our attempt
below to model the parametric dependence of the wake mode. We note that we have
not attempted to look for hysteresis in the transition to wake mode, as there is no
unambiguous way to do so computationally.

4.4. Convective and absolute instability

As indicated above, the oscillation frequency in the wake mode is independent of
the Mach number, over the large range 0.4 < M < 0.8. This implies that, unlike
the oscillations described by the Rossiter mechanism, wake mode oscillations are not
acoustically forced convective instabilities. In the wake mode, the flow exhibits several
qualitative features of absolutely unstable parallel flows, as described in, e.g. Huerre &
Monkewitz (1985), and this may provide an explanation of the governing mechanism.

The notion of absolute or convective instability is a useful tool for describing self-
sustained oscillations in parallel shear flows. The idea is the following: given a certain
parallel flow, if energy from a disturbance grows in time, but travels only downstream,
the flow is called convectively unstable. In such flows, there is no possibility for self-
sustained oscillations, since if the flow disturbance is removed, the oscillations convect
away. However, if energy grows and travels upstream, then the flow is called absolutely
unstable, and such flows have the potential for self-excitation. In this context, flows that
exhibit self-sustained oscillations are called globally unstable (Huerre & Monkewitz
1990). This terminology is normally reserved for (nearly) parallel flows, however – non-
parallel flows will normally not be steady solutions of the Navier–Stokes equations,
so it does not make sense to discuss their stability.

For cavity oscillations in the shear-layer mode, the flow is nearly parallel, so these
stability concepts apply directly. The established view of cavity oscillations in the
shear-layer mode is one of a convective Kelvin–Helmholtz instability in the shear
layer, which leads to global instability through pressure feedback from acoustic waves
generated near the trailing edge. Indeed, if D/θ0 � 1, so that the boundary condition
at the cavity bottom may be neglected, and if flow within the cavity is relatively
quiescent (such that the velocity ratio across the shear layer is approximately unity),
then analysis shows that the shear layer is indeed (locally) convectively unstable
(Huerre & Monkewitz 1985). The good prediction of oscillation frequencies by the
Rossiter formula, and the computational confirmation given earlier (e.g. figure 5 and
the results of § 3.4), confirm the feedback process leading to global instability.

In the wake mode, the flow past the cavity is far from parallel, and the disturbances
are far from small, so the notions of absolute and convective stability do not strictly
apply. Nevertheless, these notions have been applied to very similar oscillating wake
flows, such as the wake behind a cylinder, and the predictions of the theory have been
shown to be in good agreement with experiment, despite these non-parallel, large-
amplitude effects (Huerre & Monkewitz 1990). We therefore apply these ideas to the
cavity flow in wake mode, even though the theoretical justification is questionable.

With these ideas in mind, the flow in wake mode is also globally unstable, since self-
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sustained oscillations persist despite no external forcing. However, since the frequency
is independent of Mach number, the feedback mechanism is apparently no longer
acoustic. It is therefore plausible that absolute instability provides the mechanism
necessary for global instability.

The mean flow profiles shown in figure 19 show that in shear layer mode (run L2),
there is very little backflow in the cavity, and furthermore the backflow is confined to
a region at the rear of the cavity. By contrast, the wake mode profiles (run L4) reveal a
substantial backflow even very close to the cavity leading edge. Huerre & Monkewitz
(1985) have shown that for tanh profiles with greater than 13.6% backflow, the flow is
absolutely unstable. The backflow in the mean profiles for run L4 reaches a maximum
of 38% of the free-stream velocity near the centre of the cavity, decreasing to about
21% within two boundary-layer thicknesses of the leading edge, and 15% within
one boundary-layer thickness. The backflow for run L2 is much smaller, reaching a
maximum of 23% of the free-stream near the rear of the cavity, and never exceeding
3% of the free-stream anywhere in the front 40% of the cavity. The mean profiles
from run L4 are not described well by tanh profiles, but the main point is that there
is significant backflow in the cavity, and in this sense the profiles are qualitatively
similar to profiles which have been shown to be absolutely unstable. It is possible,
then, that absolute instability may provide a mechanism for transition to wake mode.
It is also conceivable that similar ideas to those expressed in Monkewitz & Nguyen
(1987) might be used to predict the shedding frequency in wake mode.

5. Prediction of the oscillation regimes
Here we discuss a method of predicting transition between the various flow regimes:

no oscillations, shear-layer mode and wake mode. Our goal is not a quantitative
prediction for the amplitude of oscillation, but rather an approximate scaling law to
determine the parametric dependence of the transitions between the different regimes.

Our criteria for predicting transition to wake mode are based on the following
observations: as certain parameters (e.g. L/θ0) are increased, the Kelvin–Helmholtz
disturbances in the shear layer grow to larger amplitude. The larger-amplitude dis-
turbances induce a larger recirculating flow within the cavity, possibly generating a
region of absolute instability in the shear layer, and ultimately inducing large-scale
vortex shedding from the leading edge. The key ideas here are that larger-amplitude
disturbances lead to larger backflow in the cavity, which ultimately leads to wake
mode.

The onset of fluctuations (i.e. the transition from steady flow to shear-layer mode)
demonstrates a similar dependence on the parameters of the problem, since the
amplification by the shear layer must exceed a certain threshold for self-sustained
oscillations to occur (Woolley & Karamcheti 1974). At low Mach number, Sarohia
(1975) determined that there is a minimum cavity length, relative to the (laminar)
incoming boundary-layer thickness, for which cavity oscillations may occur. For
sufficiently large D/θ0 (D/θ0 >∼ 15) he found oscillations only when√

Reθ L/θ0 >∼ 800, (5.1)

which also shows that there is a minimum speed, a maximum viscosity, and a
maximum boundary-layer thickness, holding other parameters constant, beyond which
there are no oscillations. Gharib & Roshko (1987) also measured the onset of
fluctuations at

√
ReθL/θ0 ≈ 780. As D/θ0 was decreased below about 15, Sarohia

(1975) found a rapid increase in the minimum length for oscillations to occur. The
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Figure 21. Simple model of nonlinearities.

data for turbulent fluctuations and higher Mach numbers are not so complete, but the
general trend is that the minimum length increases with turbulence (Krishnamurty
1956; Sarohia 1975), and decreases with increasing Mach number (Krishnamurty
1956).

Thus, if the overall amplification of disturbances can be predicted, simple criteria
for both the onset of fluctuations and the transition to wake mode would be that the
amplification exceeds a certain value. In order to test this hypothesis, we estimate the
amplification based on ideas about the shear-layer instability, and the efficiency of
the acoustic radiation from the trailing edge. Although some of the approximations
made are crude, our goal is to establish a rough parametric dependence of transitions
between the flow regimes, rather than a detailed prediction for the overall amplitude.

5.1. The role of nonlinearities

All our analysis here will be linear. One might object at the outset that linear
amplification rates say nothing about the final amplitude of a limit cycle – in fact,
once the flow has settled into a limit cycle, the loop gain (total amplification once
around the feedback loop) must be unity, regardless of the amplitude of the limit cycle
(otherwise, oscillations would grow or decay). One must, in fact, take nonlinearities
into account to predict amplitudes.

However, under simple yet reasonable assumptions about the nonlinearities present,
the linear part of the loop gain defined above can predict both the onset of oscillations
and the final amplitude of a limit cycle. Assume that the system may be approxi-
mated (crudely) by linear dynamics coupled with a frequency-independent nonlinear
saturation, as shown in figure 21. Here, G(s) is the transfer function of the linear
elements in the model (for our purposes, this will be the shear-layer amplification and
scattering at the downstream corner), and ψ(·) is a saturation nonlinearity, an odd
function with ψ(y)/y positive and decreasing for all y > 0, and with ψ(y)/y → 0 as
y →∞ (for instance, ψ(y) = tanh(y)). This form of the model lends itself to describing
function analysis (e.g. Khalil 1996), a simple tool for approximating both frequencies
and amplitudes of limit cycles in nonlinear systems.

If y is periodic, of the form y = A sinωt, then ψ(y(t)) will also be periodic, with
the same frequency, and may be written as a Fourier series

ψ(y(t)) =

∞∑
k=1

ck(A) sin kωt,

where we have used that ψ is odd. In the simplest form of describing function analysis,
one neglects higher harmonics (assuming, for instance, that they will be attenuated
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A

1/K 1/N(A)

Figure 22. Describing function N(A) for a saturation nonlinearity ψ(·).
Here K = ψ′(0), the gain of ψ(·) for small amplitudes.

by G(s)), and considers only k = 1, defining the describing function

N(A) =
c1(A)

A
=

2

πA

∫ π

0

ψ(A sin t) sin t dt. (5.2)

Sinusoidal solutions y = A sinωt of the feedback loop must then satisfy y = G(iω)ψ(y)
≈ G(iω)N(A)y, which gives the harmonic balance equation

G(iω)N(A) = 1. (5.3)

For odd nonlinearities, N(A) is real, and so taking the phase of this equation yields
\G(iω) = 0, the same criterion used in Rossiter’s model to determine possible
frequencies of oscillation. Furthermore, taking the magnitude of (5.3) gives |G(iω)| =
1/N(A), which determines the amplitude A of the limit cycle. For a saturation
nonlinearity as defined above, one can show that N(A) is decreasing for A > 0,
N(A) → 0 as A → ∞, and N(A) → K as A → 0, where K = ψ′(0) is the gain of
ψ(·) for small amplitudes. The form of the describing function N(A) is depicted in
figure 22. From this, a simple stability argument demonstrates that for |G(iω)| < 1/K ,
the frequency ω is stable (disturbances at that frequency will decay exponentially);
if |G(iω)| > 1/K , finite-amplitude oscillations occur at that frequency (a stable limit
cycle), and the amplitude A of the limit cycle increases as |G(iω)| increases. This
is clearly seen from figure 22, recalling that |G(iω)| = 1/N(A) for a limit cycle of
amplitude A and frequency ω.

Without knowing details of the nonlinearity and exact values for G(iω), we cannot
predict the exact value of the amplitude. But if we obtain scaling laws for G(iω), the
amplitude will follow (at least qualitatively) the same scaling laws: for |G(iω)| below
a certain threshold, we expect no oscillations to occur, and for |G(iω)| above this
threshold, we expect a stable limit cycle whose amplitude increases with |G(iω)|.

The precise way in which nonlinearities enter the physics is still not clearly un-
derstood. One scenario, most likely to occur for short cavities (small L/θ0), is that
employed by Cain et al. (1996), where the saturation occurs because of spreading of
the shear layer: the spreading of the mean flow is caused by Reynolds stresses that are
proportional to the square of the amplitude of the oscillations, plus any background
turbulence or other nonlinear interactions between the modes, as described by Morris,
Giridharan & Lilley (1990). Linear growth rates of the Kelvin–Helmholtz instability
waves decrease as the shear layer spreads, and eventually become negative for very
thick shear layers, thus providing a saturation mechanism. For this mechanism, then,
the shear-layer disturbances are described well by linear methods, given the correct
shear-layer thickness. Our data in § 3.4 are consistent with this, as shown by the good
agreement of the data with linear predictions (see figure 13). Though the amplification
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predicted by linear theory does not agree well (figure 15), this is more likely because
of viscous effects, rather than nonlinear effects, because there is disagreement even
for small x/θ0.

The saturation mechanism more commonly considered is that once the oscillations
grow large, the linearization is no longer valid, and the resulting nonlinear effects
limit the growth. This effect is most likely for longer shear layers (large L/θ0), as in
the experiments of Cattafesta et al. (1997), which had a very thin upstream boundary
layer (L/θ0 = 328). Knisely & Rockwell (1982) also attributed their saturation to
this mechanism, although it is also plausible that the saturation might be explained
by mean flow spreading, as the linear stability calculation they compared to had a
constant-thickness shear profile.

Both of these forms of nonlinearities fit nicely into the describing function frame-
work described above: if a shear-layer disturbance at the leading edge is given by
f(0, t) = A exp(iωt) + c.c., then at a distance x downstream, the amplified disturbance
is approximately described by

f(x, t) = Nx(A)A exp(iωt)Gx(iω) + c.c., (5.4)

where Gx(iω) is the linear gain and phase at location x (Gx(iω) = exp(iα(ω)x) for
instance), and Nx(A) is a nonlinear saturation, equal to unity for small A, and
decreasing for large A, and also depending on the position x. Thus, Nx(A) in (5.4)
plays the same role as the describing function above, and similar conclusions about
the stability and amplitude of the limit cycle follow.

5.2. Shear layer

The shear-layer amplification is a complicated function of M, L/θ0, D/θ0 and Reθ .
To proceed, we perform inviscid linear stability calculations similar to those described
in § 3.4 for each set of computational parameters in table 1, and for each of the
first three Rossiter frequencies (for which we use equation (3.1)). We assume a tanh
velocity profile with a linear spreading rate dδω/dx = 0.1. Based on the discussion
above and in § 3.3, it is clear that the true spreading rate is dependent on growth of
the disturbances in the layer, which, in turn, is dependent on all of L/θ0, D/θ0, M
and Reθ . However, we performed calculations using different values of the spreading
rate, and found the amplitude variation to be relatively weak compared to the other
factors.

5.3. Scattering

In order to assess the efficiency of the sound generation at the edge as a function
of the Mach number, we use the simple model proposed by Tam & Block (1978),
where the process is idealized as an oscillating compact mass source (monopole). We
determine the strength Q of the monopole source by setting Q equal to the mass flow
rate out of the cavity. Tam points out that ‘the unsteady mass addition and removal
at the trailing edge of the cavity as the cause of the acoustic disturbance . . . essentially
suggests a dipole source at the trailing edge,’ since by this mechanism a compression
wave outside the cavity (mass addition) would correspond to a rarefaction wave
inside the cavity (mass removal). However, as Tam points out, experimental, and now
computational, observations indicate that the pressure waves inside and outside the
cavity are in fact in phase, which corresponds to a monopole source at the trailing
edge. Thus, we model the acoustic source as a monopole at the trailing edge, whose
strength is determined by the mass flow rate out of the cavity.
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If density fluctuations are small, the mass flow rate per unit volume is given by

Q =
ṁ

V
≈ ρ∞

V

∫ L

0

v(x, 0, t) dx, (5.5)

where v is the vertical velocity, and V is the volume of the source, at this time unknown.
Assuming that the velocity perturbations are sinusoidal, with an exponentially growing
envelope, the integral above will be dominated by the portion closest to the trailing
edge, and thus scales as λ|v(L)|, where |v(L)| denotes the amplitude of the velocity
perturbation near the trailing edge, and λ is the wavelength of the instability wave.
Expressing the wavelength as λ = 2πcp/ω, where cp is the phase speed of the instability
wave, the source strength scales as

Q̇ = iωQ ∝ iω
ρ0

V

cp|v(L)|
ω

∝ ρ0cp|v(L)|
V

. (5.6)

This expression may also be arrived at on dimensional grounds alone, if it is assumed
that the monopole strength is proportional to the vertical velocity (or shear-layer
displacement) at the trailing edge.

Density fluctuations then satisfy a Helmholtz equation (e.g. Crighton 1975), and
far from the source are given by

ρ

ρ∞
∝ cp|v(L)|

a2∞

eikr

√
kr
, (5.7)

where r is the distance from the source, and k = ω/a∞ is the wavenumber. Note that
there are two asymptotic arguments leading to equation (5.7). The first is that the
retarded time is negligible over the source region (compact source), and the second
is that we are at large distance, on the scale of the wavelength, from the source. The
second approximation is not valid at very low Mach numbers, where the cavity length
is small compared to the wavelength of the acoustic waves. For the present range of
M, the asymptotic properties of the Green’s function for the Helmholtz equation (i.e.
the zeroth-order Hankel function of the first kind) can be used to show that there is
negligible error in the second assumption.

At the cavity leading edge, r = L, we then have the following scaling law (assuming
cp/U = const, as in the Rossiter model):

|ρ(0)|
ρ∞

∝ |v(L)|
U

M3/2St−1/2, (5.8)

where |ρ(0)| denotes the magnitude of density fluctuations at the leading edge, x = 0.

5.4. Loop gain

We now have enough information to determine the scaling of the loop gain for the
cavity: that is, the amplification of a disturbance as it is amplified by the shear layer
and converted into a monopole acoustic source. (We do not include receptivity effects
in this crude model.) Denoting the shear-layer amplification by A(St,M, L/θ0, D/θ0),
the loop gain scales as

βn ∝ A(Stn,M, L/θ0, D/θ0)M
3/2St−1/2

n , (5.9)

where Stn denotes the Strouhal number of Rossiter mode n, given by Rossiter’s
formula (3.1). The total amplification is then β = maxn βn, and we take β as our
criterion for predicting the onset of oscillations, and eventually wake mode. Note,
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Figure 23. Correlation of loop gain β with mode of cavity oscillations. All runs from table 1 with
56 < Reθ < 70 are shown. As in table 1, NO corresponds to no oscillations, SL denotes shear-layer
mode, M denotes mixed mode, and W wake mode.
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Figure 24. The shear-layer amplification, An, versus L/θ0; (a) for different D/θ0, with M = 0.6;
(b) for different M, with D/θ0 = 30. The dominant mode is shown at each L/θ0, with n = 1 ( e),
n = 2 (�), and n = 3 (4).

however, that the dependence on Reynolds number is not included in (5.9), as our
shear-layer calculations were inviscid. Variation with Reynolds number is considered
separately below.

Figure 23 shows how β correlates with the mode of oscillation. Because Reynolds
number effects are not included, we compare all runs in table 1 that fall in a
limited Reynolds number range, 56 < Reθ < 70. For each run, we compute the
amplification βn for the first three Rossiter modes (n = 1, 2, 3), and β for each run is
then the maximum of the three. Figure 23 shows β vs. the observed mode of cavity
oscillation, and we find that for this Reynolds number range, β < 4.8 corresponds to
no oscillations, 4.8 < β < 15 corresponds to shear-layer mode, 15 < β < 21 to mixed
mode, and β > 21 to pure wake mode.

5.5. Parametric dependence

We now discuss some results related to the specific parametric dependence of the
transitions. In figure 24(a), we have plotted the total amplification from the shear
layer alone (corresponding to An in equation (5.9)) for the first three Rossiter modes,
as a function of L/θ0 and D/θ0, at M = 0.6. Since, for fixed Mach number, the shear
layer amplification is the predominant component of the loop gain β, the figure also
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indicates trends in β as the cavity length is varied. The amplification shows strong
dependence on D/θ0, especially for D/θ0 < ∼20. This explains very well the trend
seen (for low Mach number) by Sarohia (1975), who found the minimum cavity length
for oscillations increased dramatically for small D/θ0. The plot also shows why the
higher Rossiter modes tend to dominate for longer cavities, as has been observed in
experiments.

It is interesting to note that the predictions show that multiple modes are likely
to be present at roughly equal amplitudes for cavities of certain length, while, for
other lengths, one mode is clearly dominant. For example, for L/θ0 = 125 and
D/θ0 = 30, modes 2 and 3 should be of roughly equivalent strength (ignoring
nonlinear interactions and frequency dependence of scattering/receptivity).

Figure 24(a) also shows similar effects for the transition to wake mode as a function
of D/θ0, but given that the amplitude threshold is higher, wake mode should not
occur in cavities with D/θ0 <∼ 20.

In figure 24(b) the total amplification in the shear layer for the first three Rossiter
modes is plotted as a function of L/θ0 and M, for D/θ0 = 30. The amplification
rates are highest for the lowest Mach numbers, which is consistent with many pre-
vious analyses of the Kelvin–Helmholtz instability in compressible shear layers. This
decreasing amplitude must be balanced by the increase in radiation efficiency at the
edge as M is increased. As noted above, it is observed in experiments (Krishnamurty
1956) that the minimum cavity length for the onset of fluctuations decreases with M.
This is indeed what the model predicts, as evidenced by the good agreement with our
data in figure 23.

We note that the computational data also show a tendency for transition to wake
mode with increasing Reynolds number. The R4 series of runs, for example, show a
change from shear-layer to wake mode for L/θ0 ≈ 75 as Reθ varies from 40 to 80.
The model of the transition process discussed above is based on an inviscid stability
analysis, and is therefore unable to predict any Reynolds number effects. However,
for the range of low Reynolds numbers, substantial reduction in the amplitude gain
in the shear layer may be expected (e.g. Michalke 1984), which is consistent with
figure 15, and with the observed trend in transition to wake mode.

It has been noted above that the boundary layer periodically separates and reat-
taches upstream of the cavity during wake mode oscillations. This is true for all runs
where we have observed the transition to wake mode, and it is likewise apparently
the case in the experiments of Gharib & Roshko (1987). Separation was not observed
in any of the runs with shear-layer mode oscillations. By carefully examining the
evolution of the flow over time, it is also observed that this periodic separation of
the upstream boundary layer precedes the transition of the flow to its nearly periodic
wake mode state. Thus it appears that this separation is intimately connected with
the transition to wake mode, though we have not been able to establish any causal
relationship.†

6. Concluding remarks
We have used numerical simulations to explore the operating regimes of the

laminar flow past a two-dimensional rectangular cavity. For short cavities (relative to
the upstream boundary-layer thickness), and for low Mach numbers and Reynolds

† In a preliminary report on this work (Colonius et al. 1999), we stated that the unsteady
separation appeared to be the cause of wake mode; in retrospect, this statement was too strong.
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numbers, the flow is steady. As these parameters are increased, the flow transitions
into a shear-layer mode, where self-sustained oscillations occur. This is the regime
usually observed in experiments, and the acoustic fields predicted by the simulation
agree well with schlieren photographs from the experiments by Krishnamurty (1956).
The growth of disturbances in the shear layer is predicted well by a locally parallel
linear stability calculation, where the thickness of the shear layer is measured from
the simulations.

For longer cavities, and larger Mach and Reynolds numbers, the flow transitions
into a wake mode. Similar flow features have been observed in axisymmetric cavity
experiments by Gharib & Roshko (1987), and in experiments in a pipe with closed
side branches (Kriesels et al. 1995). The frequency of oscillations in wake mode
is independent of Mach number, indicating a purely hydrodynamic (non-acoustic)
instability. In wake mode, a significant backflow is present inside the cavity, and we
hypothesize that this backflow leads to an absolute instability, which may provide the
feedback mechanism leading to wake mode. We have used a simple linear model to
predict the scaling laws governing transition between the flow regimes, and the model
agrees well with data from our simulations.

To our knowledge wake mode oscillations have not been observed in experiments
on shallow cavities in a similar range of L/D to that considered here (although
very recent three-dimensional PIV measurements (A. Krothapalli 2001, personal
communication) in an L/D = 5 cavity show on average a significant recirculating
flow, with backflow velocities reaching about 15% of the free-stream velocity). The
experiments of Krishnamurty (1956) are closest to the parameters of the present
case (the Reynolds number being typically 5 times larger than in the present flow),
but even for very shallow (large L/D) cases his schlieren photographs do not show
evidence of a transition to wake mode. On the other hand, his longest cavities had
very thick upstream shear layers (the length was held constant while decreasing the
depth, with constant upstream conditions). And as shown in the previous section,
wake mode is not indicated for D/θ0 <∼ 15.

According to the model proposed in the previous section, wake mode oscillations
should occur when the amplitude of oscillation increases beyond a certain threshold,
such that the recirculating flow in the cavity is sufficiently strong to cause a shift
to absolute instability of the shear layer. Thus, any effect that tends to decrease the
amplitude of the fluctuations could inhibit the transition to wake mode (or at least
modify the location in parameter space where the transition occurs). It is known
that when the upstream boundary layer is turbulent, the radiated acoustic field is
less intense (Krishnamurty 1956), and the minimum length for oscillations to occur is
increased (Sarohia 1975). Thus boundary-layer turbulence should inhibit the transition
to wake mode. Three-dimensional effects beyond turbulence in the boundary layer,
such as cavity sidewalls, may sufficiently change the character of the recirculating
flow in the cavity and also inhibit the transition to wake mode. Recent work by
Barkley, Gomes & Henderson (1999) shows that the first global instability of a steady
two-dimensional flow over a backward-facing step is a steady three-dimensional mode
localized within the separation bubble. The spanwise wavelength of the mode is about
7 step heights, and they suggest that the mode may be caused by centrifugal instability
within the separation bubble. The critical Reynolds number found in their calculations
was 748, which is smaller than the Reynolds number of the present simulations (based
in our case on the cavity depth) by a factor of about 2. It is plausible that similar
instabilities may be present within the recirculating flow in the shallow cavity, and
that such instabilities could significantly modify the transition to wake mode.
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It is not possible to resolve these issues without recourse to more detailed three-
dimensional simulations and experiments. It is our hope that the model proposed
here for the transition may help guide future efforts to fully characterize the transition
to wake mode in more general turbulent and three-dimensional flows.
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